Euclid (Öklid) Kimdir? Biyografi Sayfası

27.10.2021
541
Euclid (Öklid) Kimdir? Biyografi Sayfası

Euclid (Öklid) Kimdir? Biyografi, bölümünde Euclid (Öklid) Kimdir? Biyografi sayfası ile karşınızdayız. Euclid (Öklid) Kimdir? Biyografi detayları ile daha da iyi tanıyalım.

Euclid (Öklid) Kimdir? Biyografi – Kaç Yaşında – Memleketi Neresi

Euclid (Öklid) Kimdir

Euclid (Öklid), (M.Ö. 325 – M.Ö. 265) Çağlar boyu yalnız matematik dünyasının değil, matematikle yakında zamandan ilgilenen hemen herkesin gözünde özenilen, yetkin bir örnek oldu.

Öklid, M.Ö. 300 saatleri civarında yazdığı 13 ciltlik eseri ile ünlüdür. Bu eser, geometriyi ispat bağlamında aksiyomatik bir dizge olarak işleyen, ilk kapsamlı çalışmadır. 19. yüzyıl sonlarına gelinceye kadar alanında tek ders kitabı olarak akademik çevrelerde okunan, okutulan Elementler’in, kimi yetersizliklerine karşın, değerini bugün de sürdürdüğü söylenebilir.

Egeli matematikçi Öklid’in kişisel yaşamı, aile çevresi, matematik dışı uğraş yahut meraklarına ilişkin hemen hiçbir şey bilinmemektedir. Bilinen tek şey; Iskenderiye Kraliyet Enstitüsü’nde dönemin en saygın öğretmeni; alanında yüzseneler boyu eşsiz kalan bir ders kitabının yazarı olmasıdır. Eğitimini Atina’da Platon’un ünlü akademisinde bitirdiğı sanılmaktadır. O akademi ki giriş kapısında, ”Geometriyi bilmeyen hiç kimse bu kapıdan içeri alınmaz!” levhası asılıydı.


Öklid’in bilimsel kişiliği, unutulmayan iki sözünde yansımaktadır:

Dönemin kralı I. Ptolemy, okumada kuvvetlik çektiği Elementler’in yazarına, “Geometriyi kestirmeden öğrenmenin yolu yok mu?” diye sorduğunda, Öklid “Özür dilerim, ama geometriye giden bir kral yolu yoktur” der. Bir gün dersini bitirdiğinde öğrencilerinden biri yaklaşır, ”Hocam, verdiğiniz ispatlar çok güzel; ama pratikte bunlar neye yarar?” diye sorduğunda, Öklid kapıda bekleyen kölesini çağırır, “Bu delikanlıya 5-10 kuruş ver, vaktinin boşa gitmediğini görsün!” demekle yetinir.

Öklid haklı olarak “geometrinin babası” diye bilinir; ama geometri onunla başlamış değildir. Tarihçi Herodotus (M.Ö. 500) geometrinin başlangıcını, Nil vadisinde yıllık su taşmalarından sonra arazi sınırlarını belirlemekle görevli kadastrocuların çalışmalarında bulmuştu. Geometri “yer” ve “ölçme” manasına gelen “geo” ve “metrein” sözcüklerinden bir araya gelen bir terimdir. Mısır’ın bunun yanında Babil, Hint ve Çin gibi eski uygarlıklarda da gelişen geometri o zamanlarda büyük ölçüde, el yordamı, ölçme, analoji ve sezgiye dayanan bir yığın işlem ve bulgudan ibaret çalışmalardı. Üstelik ortaya konan bilgiler çoğunlukla kesin olmaktan uzak, tahmin çerçevesinde kalan sonuçlardı. Misal verilecek olursa, Babilliler dairenin çemberini çapının üç katı olarak biliyorlardı. Bu öylesine yerleşik bir bilgiydi ki; pi sayısı değerinin 3 değil, 22/7 olarak ileri sürenlere, bir tür şarlatan gözüyle bakılıyordu. Mısırlılar bu hususta daha hassasydılar: M.Ö. 1800 senelerına ait Rhind papirüslerinde onların pi’yi hemen hemen 3.1604 olarak tespit ettikleri görülmektedir; ama Mısırlıların bile her zaman doğru sonuçlar ortaya koyduğu söylenemez. Nitekim, kesik kare piramidin oylumunu (hacmini) hesaplamada doğru formülü bulan Mısırlılar, dikdörtgen için doğru olan bir alan formülünün, tüm dörtgenler için geçerli olduğunu sanıyorlardı.
Aritmetik ve cebir alanında Babilliler , Mısırlılardan daha ilerde idiler. Geometride de önemli buluşları vardı. Misal verilecek olursa, “Pythagoras Teoremi” dediğimiz, bir dik açılı üçgende dik kenarlarla hipotenüs içindeki bağıntıya ilişkin önerme “bir dik üçgenin dik kenar karelerinin toplamı, hipotenüsün karesine eşittir” buluşlarından biriydi. Ne var ki, doğru da olsa bu bilgiler ampirik nitelikteydi; mantıksal ispat aşamasına geçilmemişti halen. Egeli Filozof Thales’in (M.Ö. 624-546), geometrik önermelerin dedüktif yöntemle ispatı gereğini ısrarla vurguladığı, bu yolda ilk adımları attığı bilinmektedir . Mısır gezisinde tanıştığı geometriyi, dağınıklıktan kurtarıp, tutarlı, sağlam bir temele oturtmak istiyordu. İspatladığı önermeler içinde . ikizkenar üçgenlerde taban açılarının eşitliği; kesişen iki doğrunun oluşturduğu zıt açıların birbirine eşitliği vb. ilişkiler vardı.
Klasik çağın “Yedi Bilgesi”nden birisi olan Thales’in açtığı bu yolda, Pythagoras ve onu seyredenlerin elinde, matematik büyük ilerlemeler kaydetti, sonuçta Elementler’de işlenildiği gibi, bi hayli soyut mantıksal bir dizgeye ulaştı. Pythagoras, matematikçiliğinin bunun yanında, sayı mistisizmini içeren gizliliğe bağlı bir tarikatın önderiydi. Buna göre; sayısallık evrensel uyum ve düzenin asal niteliğiydi; ruhun yücelip tanrısal kata erişmesi fakat müzik ve matematikle olasıydı.

Buluş ve ispatlarıyla matematiğe önemli katkılar yapan Pythagorasçılar, sonunda inançlarıyla ters düşen bir buluşla açmaza düştüler. Bu buluş, karenin kenarı ile köşegenin ölçüştürülemeyeceğine ilişkindi. kök 2 gibi, bayağı kesir şeklinde yazılamayan sayılar , onların gözünde gizli tutulması gereken bir skandaldı. Rasyonel olmayan sayılarla temsile elveren büyüklükler nasıl olabilirdi? (Pythagorasçıların tüm çabalarına karşın üstesinden gelemedikleri bu sıkıntıyı, ardından tanınmış bilgin Eudoxus oluşturduğu, irrasyonel büyüklükler için de geçerli olan, Orantılar Kuramı’yla giderir).


Öklid, Pythagoras (Pisagor) geleneğine bağlı bir ortamda yetişmişti. Platon gibi, onun için de önemli olan soyut düşünceler , düşünceler içindeki mantıksal bağıntılardı. Duyumlarımızla içine düştüğümüz farkında olmadanrdan, fakat matematiğin sağladığı evrensel ilkeler ve salt ussal metotlarla kurtulabilirdik. Kaleme aldığı Elementler, kendisini önceleyen Thales, Pythagoras, Eudoxus gibi, bilgin-matematikçilerin çalışmaları üstüne kurulmuştu. Geometri bir önermeler koleksiyonu olmaktan çıkmış, sıkı mantıksal çıkarım ve bağıntılara dayanan bir dizgeye dönüşmüştü. Artık önermelerin doğruluk değeri, gözlem yahut ölçme verileriyle değil, ussal ölçütlerle denetlenmekteydi. Bu yaklaşımda pratik endişelar ve uygulamalar arka plana itilmişti.

Kuşkusuz bu, Öklid geometrisinin pratik problem çözümüne elvermediği demek değildi. Tam tersine, değişik mühendislik alanlarında birden fazla sorunun, bu geometrinin yöntemiyle çözümlendiği; ama Elementler’in, eğreti olarak değindiği bazı örnekler dışında, uygulamalara yer vermediği de bilinmektedir. Öklid’in pratik endişelardan uzak olan bu tutumunun matematik dünyasındaki izleri, bugün de rastladığımız bir geleneğe dönüşmüştür.

Gerçekten, özellikle seçkin matematikçilerin gözünde, matematik şu veya bu işe yaradığı için değil, yalın gerçeğe yönelik, sanat gibi güzelliği ve değeri kendi içinde Soyut bir düşün uğraşı olduğu için mühimdir.

Matematiğin tümüyle ussal bir etkinlik olduğu doğru değildir. Buluş bağlamında tüm diğer bilimler gibi matematik de, sınama-yanılma, tahmin, sezgi, içedoğuş türünden öğeler içermektedir. Yeni bir bağıntıyı sezinleme, değişik bir kavram yahut yöntemi ortaya koyma, temelde mantıksal olmaktan çok psikolojik bir olaydır. Matematiğin ussallığı, doğrulama bağlamında belirgindir. Teoremlerin ispatı, büyük ölçüde kaideleri belli, ussal bir işlemdir; ama şu sorulabilir: Öklid neden, geometrinin ölçme sonuçlarıyla doğrulanmış önermeleriyle yetinmemiş, bunları ispatlayarak, mantıksal bir dizgede toplama yoluna gitmiştir?

Öklid’i bu girişiminde güdümleyen motiflerin ne olduğunu söylemeye olanak yoktur; fakat, Helenistik çağın düşün ortamı göz önüne alındığında, başlıca dört noktanın öngörüldüğü söylenebilir:

1) İşlenen hususta çoğu kez belirsiz kalan anlam ve ilişkilere açıklık getirmek;
2) İspatta başvurulan öncülleri (varsayım, aksiyom yahut postulatları) ve çıkarım kaidelerinı belirtik kılmak;
3) Ulaşılan sonuçların doğruluğuna mantıksal geçerlik kazandırmak (Başka bir deyişle, teoremlerin öncüllere görecel zorunluluğunu, yani öncülleri doğru kabul ettiğimizde teoremi yanlış sayamayacağımızı göstermek);
4) Geometriyi, ampirik genellemeler düzeyini aşan soyut-simgesel bir dizge düzeyine çıkarmak (Bir örnekle açıklayalım: Mısırlılar ile Babilliler kenarları 3, 4, 5 birim uzunluğunda olan bir üçgenin, dik üçgen olduğunu deneysel olarak biliyorlardı; ama bu ilişkinin 3, 4, 5 uzunluklarına özgü olmadığını, başka uzunluklar için de geçerli olabileceğini gösteren veriler ortaya çıkıncaya dek kestirmeleri güçtü; buna ihtiyaçları da yoktu. Öyle kuramsal bir açılma için pratik endişelar ötesinde, salt entellektüel motifli bir arayış içinde olmak gerekir. Nitekim, Egeli bilginler somut örnekler üzerinde ölçmeye dayanan belirlemeler yerine, bilinen ve bilinmeyen tüm örnekler için geçerli soyut genellemeler arayışındaydılar. Onlar, kenar uzunlukları a, b, c diye tespit edilen üçgeni ele almakta, üçgenin fakat a2+b2=c2 eşitliği yaşandığında dik üçgen olabileceği genellemesine gitmektedirler).

Öklid oluşturduğu dizgede birtakım tanımların bunun yanında, beşi “aksiyom” dediği genel ilkeden, beşi de “postulat” dediği geometriye özgü ilkeden bir araya gelen, on öncüle yer vermiştir (Öncüller, teoremlerin tersine ispatlanmaksızın doğru sayılan önermelerdir). Dizge tüm yetkin görünümüne karşın, aslında çeşitli yönlerden birtakım yetersizlikler içermekteydi. Bir kez verilen tanımların bir bölümü (özellikle, “nokta”, “doğru”, vb. ilkel terimlere ilişkin tanımlar) gereksizdi. Sonra daha önemlisi, tespit edilen öncüller dışında bazı varsayımların, belki de farkında olmaksızın kullanılmış olması, dizgenin tutarlılığı yönünden önemli bir kusurdu. Ne var ki, matematiksel yöntemin oluşma içinde olduğu başlangıç zamanında, bir bakıma kaçınılmaz olan bu tür yetersizlikler, giderilemeyecek şeyler değildi. Nitekim, l8. yüzyılda başlayan eleştirel çalışmaların dizgeye daha açık ve tutarlı bir bütünlük sağladığı söylenebilir. Üstelik dizgenin irdelenmesi, beklenmedik bir gelişmeye de yol açmıştır: Öncüllerde bazı değişikliklerle yeni geometrilerin ortaya konması. “Öklid-dışı” diye bilinen bu geometriler, sağduyumuza aykırı da düşseler, kendi içinde tutarlı birer dizgedir. Öklid geometrisi, artık var olan tek geometri değildir. Öyle de olsa, Öklid’in düşünce tarihinde tuttuğu yerin değiştiği söylenemez.

Çağımızın seçkin filozofu Bertrand Russell’ın şu kelimelerinde Öklid’in özlü bir değerlendirmesini bulmaktayız: ‘”Elementler’e bugüne değin yazılmış en büyük kitap gözüyle bakılsa yeridir. Bu kitap gerçekten Grek zekasının en yetkin anıtlarından biridir. Kitabın Greklere özgü kimi yetersizlikleri yok değildir, şüphesiz: dayandığı yöntem salt dedüktif niteliktedir; üstelik, öncüllerini oluşturan varsayımları yoklama olanağı yoktur. Bunlar kuşku götürmez apaçık doğrular olarak konmuştur. Oysa, 19.yüzyılda yaşanan Öklid-dışı geometriler, bunların hiç değilse bir bölümünün yanlış olabileceğini, bunun da fakat gözleme başvurularak belirlenebileceğini göstermiştir.”

Gene Genel Rölativite Kuramı’nda Öklid geometrisini değil, Bernhard Riemann geometrisini kullanan Einstein’ın, Elementler’e ilişkin yargısı son derece çarpıcıdır: “Gençliğinde bu kitabın büyüsüne kapılmamış bir kimse, kuramsal bilimde önemli bir atılım yapabileceği hayaline boşuna kapılınasın!”
YAZAR BİLGİSİ
YORUMLAR

Henüz yorum yapılmamış. İlk yorumu yukarıdaki form aracılığıyla siz yapabilirsiniz.